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EXECUTIVE SUMMARY

The Human-Automation Collaboration (HAC) research effort is a part of the
Department of Energy (DOE) sponsored Advanced Small Modular Reactor
(AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE
AdvSMR program focuses on plant design and management, reduction of capital
costs as well as plant operations and maintenance costs (O&M), and factory
production costs benefits.

It is expected that AdvSMRs will employ technology that is significantly
more advanced than the analog systems in the existing light water reactor fleet as
well as utilizing automation to a greater extent. Moving towards more advanced
technology and more automation does not necessary imply more efficient and
safer operation of the plant. Instead, a number of concerns about how these
technologies will affect human performance and the overall safety of the plant
need to be addressed. More specifically, it is important to investigate how the
operator and the automation work as a team to ensure effective and safe plant
operation, also known as the human-automation collaboration. There is a
distinction between the HAC and human-system interaction (also known as
human-computer interaction) where the focus of HAC is on understanding the
effects of various characteristics of automation (such as its reliability, processes,
and modes) on an operator’s use and their awareness of plant conditions.

The HAC research project investigates how to best design the collaboration
between the operators and the automated systems in a manner that has the
greatest positive impact on overall plant performance and reliability. The overall
goal of the HAC research effort is to develop design guidance that supports
optimal interaction between humans and automated systems. This guidance will
be incorporated into an interactive tool for design and evaluation of HAC. The
tool is intended to be used by engineers in their process of designing AdvSMR
systems.

This report addresses the milestone M3SR-14IN1301057: Conclude
experimental studies using simulated process systems. The milestone marks the
completion of a first experimental study using simulated process systems
investigating knowledge gaps identified during FY'13's studies related to Human-
Automation Collaboration for complex and highly automated systems.

Previous activities in the HAC research aimed to identify HAC related
knowledge gaps needing to be investigated in order to develop the design
guidance. The researchers studied the current state-of-practice of HAC in the
human factors and automation research fields, in the AdvSMR industry, and in
similar industries. Based on the results from these activities a model of human-
automation collaboration was developed. The HAC model identified several
important features of automation that influence human-automation interaction
including; level of automation, cognitive function automation replaces (e.g.,
detecting anomalies or taking control actions), adaptability, reliability, process of
automation, and automation modes. Using the model, the researchers were also
able to identify several important human performance and HAC performance
outcomes. These outcomes should be used to evaluate HAC design. Examples of
outcomes identified via the model are; system performance, situation awareness,
workload, trust in automation, and team Situation Awareness.
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The process by which the team plans to develop the guidance can be
summarized as: 1) Identify HAC research needs, 2) Identify functions and tasks
for AdvSMR, 3) Prioritize research needs based on functions and tasks identified,
4) Conduct HAC research to fulfill the needs , and 5) Synthesize results from
research to develop design guidance for HAC in AdvSMR. The investigation of
the current state-of-practice of HAC in the human factors and automation
research fields, in the AdvSMR industry, and in similar industries as well as the
development of the HAC Model supported the identification of high level
research needs. The identified needs are:

e Models of Team Work
e Initiators and Triggering Conditions for Adaptive Automation.
e HAC Performance Measures

e Impact of Highly Automated Advanced Small Modular Reactors on
Operator Awareness

e Regaining/Reacquisition of Operator Awareness
e Effects of HAC Characteristics on Operator's Use of Automation

The high level research needs and the defined research question were used to
identify and prioritize the research gaps to address first. Three analytical studies
were identified and conducted: 1) Model of Teamwork, 2) Standardized HAC
Performance Measurement Battery, and 3) Initiators and Triggering Conditions
for Adaptive Automation. For more information about the analytical studies and
their results, see Oxstrand et al, 2013b.

Some knowledge gaps are better suited to be explored by experimental
studies rather than analytical. The high level knowledge gaps identified earlier
which could be investigated by experimental studies are: Impact of Highly
Automated Advanced Small Modular Reactors on Operator Awareness,
Regaining/Reacquisition of Operator Awareness, and Effects of HAC
Characteristics on Operator's Use of Automation.

The analytical study on initiators and triggering conditions for adaptive
automation identified a research path that had potential to address some of the
general research questions. Specifically, "How do we get the most benefits out of
using automation while keeping the operators engaged in the process at the same
time?”” Based on its potential to cover multiple knowledge gaps it was decided to
further investigate adaptive automation through an experimental study.

Through the literature review conducted during the identification of the
current state-of-practice activity, it was found that many research studies have
demonstrated the effectiveness of adaptive automation in enhancing performance
compared to fully manual and a few studies have also demonstrated that
automation fault recovery with adaptive automation is superior to fully
automated systems. In addition, many studies have shown that situation
awareness is better with adaptive automation than with fully automated systems.
Essentially, the promise of adaptive automation is that it provides system
performance similar to fully automated designs, but without the negative human
performance consequences. However, there are still many unanswered questions
regarding the applicability and superiority of adaptive automation. For example,
few studies actually compare adaptive automation to intermediate levels, instead
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most studies focused on comparing the extremes (fully manual and fully
automatic). Thus, the question still remains; does adaptive automation manage
human performance and system performance tradeoffs more effectively than
static intermediate levels?

Previous research efforts in the HAC project identified adaptive automation
based on a task delegation interface as a good candidate for enhancing
performance in the AdvSMR domain. Researchers conducted an experimental
study to compare performance on a simplified process control simulation using
the adaptive automation design to varying levels of automation under normal
conditions and automation failure conditions.

A simplified process control simulation was developed to test human-
automation interaction. The process control simulation was developed to enable
the researchers to investigate the interaction and collaboration in a controlled
way and that could also be generalized to the context of AdvSMRs. The process
was designed to be simple enough for undergraduate psychology students to be
able to operate with minimal training, but complex enough to allow for varying
the level of automation. The process also needed to be difficult enough for
researchers to detect differences in performance across the automation
conditions. The process was also designed with proposed concepts of operations
of AdvSMRs in mind. For example, the process requires the management of two
separate product streams with different operational requirements. One of these
product streams has dynamic requirements. This design is mimicking integrated
energy systems and load-following, which are potential operational concepts for
AdvSMRs.

The process simulation is designed with four possible levels of automation:
1. Fully manual: The operator handles all tasks manually.

2. Intermediate: The automation monitors, generates responses, and
presents possible actions to the operators, and the operator chooses the
actions to be taken, the automation then carries out the chosen action.

3. Fully Automatic: Automation handles all tasks, Operator task is to
monitor and take manual control if necessary.

4. Adaptable: The process was divided into four high level tasks. The
operator can choose to delegate any (or all) of the four tasks to the
automation or perform the tasks manually.

Participants were 101 undergraduate psychology students at Idaho State
University. There were 35 males and 66 females. The average age was 23years.
The participants were given course credit for their participation.

The main independent variable was the automation condition, which was
manipulated between participants (each participant executed both scenarios using
a single level of automation). The other independent variable was the scenario
type (introduced automation fault and no fault). This was manipulated within
participants where each participant did one of each scenario type. The automation
fault was the same for each participant. During the fault scenario, one pump fails
to turn on automatically when a valve is opened. The participant had to manually
control the pump in order to recover from the fault and keep the parameter in



range. The participants were trained on how to do so before starting the scenario.
The fault was injected at the same time for each participant.

The researchers applied the results of the performance measure battery
development (Oxstrand et al., 2013c¢) to design the specific metrics for the study.
The researcher measured system performance by assessing the degree to which
the parameters are kept within range. They adapted the discrepancy score metric
reported in Ha and Seong (2009). In addition, the researchers measured the total
time that any one of the parameters was out of range.

Situation awareness (SA) was assessed by a freeze probe. The SA
questionnaire was based on the Situation Awareness Control Room Inventory
technique (SACRI) (Hogg et al., 1995). The participants were asked about each
of the parameters they were required to monitor. Workload was assessed by
NASA Task Load Index (NASA TLX) (Hart & Staveland, 1988). The NASA
TLX is a subjective workload questionnaire that is administered after each task.

Automation fault management was assessed by determining if the
participant; 1) switched the pump to manual, and 2) returned the parameter
associated with the fault to acceptable range before the scenario ended. If both
conditions were satisfied, then it was counted as a success. If not then it was
counted as a failure.

It was concluded that the results from the experimental study do not confirm
the common claim that adaptable automation is an effective method to manage
human performance and system performance tradeoffs associated with increasing
automation, but do not necessarily refute it. The results indicate that performance
using adaptable automation is similar to that of using intermediate automation.
This does not support the claim that adaptable automation is a better solution
than intermediate levels of automation, which is often stated by other researchers.

However, it is also important to note that there were other results from the
study that were not consistent with previous literature. This inconsistency could
be due to some of the limitations present in the experimental study. Some of the
identified limitations were:

e The study was conducted with University students who received
minimal training.

e The process control simulation was not sufficiently complex to
design a truly hierarchical abstraction scheme needed to detect
differences between adaptable automation and intermediate levels of
automation.

e The definition for intermediate level of automation used in the study
does not represent static automation.

In conclusion, the results of the experimental study indicates that although
many researchers have suggested adaptive automation may enable higher levels
of automation without introducing human performance costs, further research is
needed to determine if it is truly superior to intermediate levels of automation.
Experimental research efforts in the HAC project will investigate the effects of a
modified process control simulation (with modification to the automation
schemes to more accurately reflect the schemes used in other research) on expert
performers. The researchers will extensively train a group of participants on
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operation of the simulation in order to eliminate the issues related to novice
participants controlling the process.

Empirical and analytical research will be conducted as needed to investigate
the affect of automation on performance, efficiency, and safety. The design of
human-system interaction to best support operation of automated systems and
multiple product streams will be investigated through process simulator studies.
As additional studies are planned and conducted the SA measures will be refined
and the automation design will be revised based on insight from the first
experimental study.

The results from the empirical and analytical studies will be used to refine
the HAC model, which was initially developed by the researchers 2013. The
refined model will be used to identify design requirements needed to ensure safe
and effective operation. Based on the requirements a guidance document for
development and evaluation of HAC design will be developed. In order to make
the guidance document more practical to use, the researchers will develop a
software tool for design and evaluation of Human-Automation Collaboration.
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Effects of Levels of Automation for Advanced Small
Modular Reactors: Impacts on Performance,
Workload, and Situation Awareness

1. INTRODUCTION

The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy
(DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National
Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of
capital costs as well as plant operations and maintenance costs, and factory production costs benefits.

It is assumed that AdvSMR designs will employ some level of advanced digital instrumentation,
controls, and human-machine interfaces to optimize the use of instruments and controls, increase plant
availability, and reduce staffing requirements. In other words, AdvSMRs will employ technology that is
significantly more advanced than the analog systems in the existing light water reactor fleet. It is expected
that AdvSMRs will rely on automation to a greater extent than the current nuclear power plant fleet. As
always when moving towards more advanced technology, there are a number of concerns about how these
technologies will affect human performance and the overall safety of the plant.

The HAC research project investigates how to best design the collaboration between the operators
and the automated systems in a manner that has the greatest positive impact on overall plant performance
and reliability. There is a distinction between the HAC and human-system interaction (also known as
human-computer interaction). HAC is defined as how the operator and the automation work as a team to
ensure effective and safe plant operation. At this level, the focus is to understand the effects of various
characteristics of automation (such as its reliability, processes, and modes) on an operator’s use and their
awareness of plant conditions. The overall goal of the HAC research effort is to develop design guidance
that supports optimal interaction between humans and automated systems. This guidance will be
incorporated into an interactive tool for design and evaluation of HAC. The tool is intended to be used by
engineers in the design process of AdvSMR systems.

The first step to develop design guidance, and thus reach the goal of the research effort, is to identify
and characterize the current state-of-practice of HAC. A literature review aimed to identify human factors
and automation factors that influence HAC was conducted. The team identified and analyzed key
contributing factors, such as levels of automation, reliability, cognitive functions that the automation is
responsible for, and how those aspects of automation affect operator performance and system
performance. The majority of the human factors' literature defines performance problems associated with
certain HAC configurations, but does not necessarily describe circumstances that lead to successful
collaboration. Hence, there are knowledge gaps needed to be addressed to provide adequate knowledge
and understanding of the specific HAC needs for AdvSMRs and other highly complex and highly
automated systems.

1.1 Background

Previously conducted activities in the HAC research project aimed to identify HAC related
knowledge gaps that needed to be investigated in order to develop the design guidance. The researchers
studied the current state-of-practice of HAC in the human factors and automation research fields, in the
AdvSMR industry, and in similar industries. Based on the results from these activities a model of human-
automation collaboration was developed. The HAC model identified several important features of
automation that influence human-automation interaction including; level of automation, cognitive
function automation replaces (e.g., detecting anomalies or taking control actions), adaptability, reliability,
process of automation, and automation modes. Using the model, the researchers were also able to identify
several important human performance and HAC performance outcomes, such as system performance,



situation awareness, workload, trust in automation, and team situation awareness. These outcomes should
be used to evaluate HAC design.

The process by which the researchers plan to develop the HAC design guidance can be summarized
as: 1) Identify HAC research needs, 2) Identify functions and tasks for AdvSMR, 3) Prioritize research
needs based on functions and tasks identified, 4) Conduct HAC research to fulfill the needs, and 5)
Synthesize results from research to develop design guidance for HAC in AdvSMR. The investigation of
the current state-of-practice of HAC in the human factors and automation research fields, in the AdvSMR
industry, and in similar industries as well as the development of the HAC Model supported the
identification of high level research needs. The areas where additional research is needed to close
knowledge gaps are:

e Models of team work

o Initiators and triggering conditions for adaptive automation

e HAC performance measures

e Impact of highly automated advanced small modular reactors on operator awareness
e Regaining/reacquisition of operator awareness

e Effects of HAC characteristics on operator's use of automation

The high level research needs were used to identify and prioritize the research gaps to address first.
Three analytical studies were identified and conducted: 1) Model of teamwork, 2) Standardized HAC
performance measurement battery, and 3) Initiators and triggering conditions for adaptive automation. For
more detailed description of the previously conducted research and the path towards identifying the
current state-of-practice and knowledge gaps, see Oxstrand et al., 2013a, 2013b, and 2013c.

The analytical studies, described in Oxstrand et al. 2013c, addressed some of the research gaps, but
many important research issues remain to be addressed before guidance on human automation
collaboration can be developed. For example, the analytical study on initiators and triggering conditions
for adaptive automation identified a potentially fruitful research path that would also help to answer some
of the general research questions. Specifically, "How do we get the most benefits out of using automation
while keeping the operators engaged in the process at the same time?”

The question mentioned above is one of the questions the researchers aimed to address in the
experimental study they conducted in 2014. This report describes the research activities leading up to the
study, the method used in the study, and the result of the study. Hence, the report addresses the milestone
“M3SR-14IN1301057: Conclude experimental studies using simulated process systems”. The milestone
marks the completion of a first experimental study using simulated process systems investigating
knowledge gaps identified during FY'13's studies related to Human-Automation Collaboration for
complex and highly automated systems. The following sections provide a summary of the main areas
covered in the literature review and the knowledge gaps identified. Some of these gaps were selected for
further investigation in the experimental study, which is described in Section 2— Method and Section 3 —
Results.

1.2 Current State-of-Knowledge

AdvSMRs are expected to use higher degrees of automation than the existing fleet of light water
reactors in the United States. Consequently, the role of the human operator in these systems will shift
from a direct controller, to the role of monitoring and supervising automated activities. Reliable
automation typically enhances overall performance of the human-system; however it often also has the
negative consequence of reducing human monitoring and situation awareness (Endsley, 1995, 1996,
1997; Endsley & Kaber, 1999; Kaber & Endsley, 1997, 2004; Parasuraman et al., 2000; Sheridan, 2002;



Wickens & Hollands, 2000; Wright & Kaber, 2005). In systems where the human operator has the
ultimate responsibility to maintain a safe system state (such as in process control systems and nuclear
power plants), the operator must maintain a level of situation awareness that will allow him to recover in
case the automation fails. Therefore, the overall performance of the human-system needs to be
characterized based on combination of system performance and human performance (including situation
awareness (SA) and automation failure recovery).

In fulfilling their responsibilities, agents (automation or human) perform primary tasks (i.e., cognitive
functions). These cognitive functions include activities such as monitoring plant parameters, executing
procedures, starting pumps, and aligning valves. Cognitive functions have several common elements,
whether the agent is automation or a human operator: monitoring and detection, situation assessment,
response planning, and response implementation. When the agents are human, they also must perform
interface management tasks such as navigating or accessing information at workstations and arranging
various pieces of information on the screen. These secondary tasks are important to consider because they
create workload and may divert attention away from primary tasks and make them difficult to perform
(O’Hara & Brown, 2002). The proposed a set of cognitive functions that consider all of the factors by
O’Hara et al. (2010) are:

Monitoring and detection refer to the activities involved in extracting information from the
environment. Monitoring is checking the state of the plant to determine whether it is operating correctly,
including checking parameters indicated on the control panels, monitoring those displayed on a computer
screen, obtaining verbal reports from other personnel, and sending operators to areas of the plant to check
on equipment. An alarm system is an example of automation applied to monitoring and detection.

Situation assessment is evaluating current conditions to assure their acceptability or determining the
underlying causes of any abnormalities (e.g., diagnosis). An example of automation applied to a situation
assessment is a disturbance analysis system and other computerized operator-support systems.

Response planning refers to deciding on or choosing a course of action to address the current
situation. In a nuclear power plant, procedures usually aid response planning. An example of automation
applied to response planning is a computer-based procedure system.

Response implementation is undertaking the actions specified by response planning. They include
selecting a control, providing control input, and monitoring the responses of the system and process. An
example of automation applied to implementing a response is an automatic safety system such as soft
controls.

Interface management encompasses activities such as navigating or accessing information at
workstations and arranging various pieces of information on the screen. An example of applying
automation to interface management is automatic identification of a display appropriate to the ongoing
situation (e.g., identification of an emergency-procedure display upon detecting any of the procedures
entry conditions). In this context, human-system interface (HSI) notifies the operator of the availability of
the display (i.e., by a blinking icon at the bottom of the screen), rather than disrupting the operator’s
ongoing activity by obtrusively showing the display.

Researchers exploring human-automation interaction typically describe automation based on the level
and type of automation being employed. There are numerous taxonomies of levels of automation (LOA)
(e.g., Parasuraman et al. 2000; Billings, 1991; Endsley and Kaber, 1999, and O’Hara et al., 2010), and
each researcher defines level of automation slightly differently. Most researchers acknowledge that level
of automation refers to the amount of automation that is employed in a particular task. This typically
varies from fully manual to fully automatic with intermediate levels representing shared responsibility
between the human and automation. Where researchers tend to disagree is whether the type of activity
that is being automated should be included in characterizations of level of automation. Some researchers
include cognitive function (i.e., the agent’s primary function as discussed above) as an additional



dimension in the characterizations of level of automation (Endsley & Kaber, 1999; Parasuraman et al.,
2000). Like the functions listed by O’Hara (2010), Parasuramn et al (2000) describe a taxonomy that lists
the cognitive functions of information acquisition, information analysis decision and action selection, and
action implementation. Each of these functions could be delegated to the human or the automation, or
some combination thereof.

Endsley and Kaber (1999) proposed an LOA taxonomy intended to be generic enough to have
applicability to a wide range of cognitive and physical tasks that require real-time control in a number of
industries. In developing this model, Endsley and Kaber assigned the monitoring, generating, selecting,
and implementing cognitive functions to the human operator, automation, or a combination of the two to
develop the 10 levels of automation shown in Table 1. Note that as the LOA increases, automation takes
over progressively more of each cognitive function.

Table 1. Level of Automation Taxonomy (Endsley & Kaber, 1999).

Roles
Levels of Automation Monitoring Generating Selecting Implementing
(1) Manual control Human Human Human Human
(2) Action support Human/ Human Human Human/
computer computer
(3) Batch processing Human/ Human Human Computer
computer
(4) Shared control Human/ Human/ Human Human/
computer computer computer
(5) Decision support Human/ Human/ Human Computer
computer computer
(6) Blended decision Human/ Human/ Human/ Computer
making computer computer computer
(7) Rigid system Human/ Computer Human Computer
computer
(8) Automated decision Human/ Human/ Computer Computer
making computer computer
(9) Supervisory control Human/ Computer Computer Computer
computer
(10) Full automation Computer Computer Computer Computer

The majority of the taxonomies are developed in the context of other industries than nuclear power
generation. In an effort to bridge this gap, O’Hara et al. (2010) adapted the existing taxonomies to account
for the types of automation used in the nuclear industry. The Table 2 below describes the O’Hara et al.
taxonomy.

Table 2. Preliminary Levels of Automation for Nuclear Power Plant Applications (O'Hara et al., 2010).

Level Automation Functions Human Functions
1. Manual Operation | No automation Operators manually perform all
functions and tasks
2. Shared Operation Automatic performance of some Manual performance of some
functions or tasks functions/tasks
3. Operation by Automatic performance when Operators monitor closely, approve
Consent directed by operators to do so, actions, and may intervene to provide




under close monitoring and supervisory commands that automation

supervision follows
4. Operation by Essentially autonomous operation | Operators must approve critical
Exception unless specific situations or decisions and may intervene
circumstances are encountered
5. Autonomous Fully autonomous operation; Operators monitor performance and
Operation system or function cannot perform backup if necessary, feasible,

normally be disabled, but may be and permitted
started manually

There are many different definitions of cognitive functions depending on the researcher and the
model of cognition used. The HAC research team studied how cognitive functions were incorporated in to
the taxonomies for LOA. Even though the O’Hara et al. LOA taxonomy was developed for the nuclear
industry it was developed for near-term applications in advanced plants. While those plants are likely to
use more automation than an existing light water reactor plant, they may not use automation to the degree
that is anticipated for AdvSMRs. Therefore, research is needed to identify potential revisions of existing
taxonomies, including the O’Hara et al., to ensure a more accurate reflection of the AdvSMR context.

The process of assessing the current situation, i.e., to produce a mental representation which reflects
the person’s understanding of what is going on is generally referred to as “situation awareness” (SA)
(Endsley, 1995). In other words, SA is the evaluation of current conditions to determine that they are
acceptable or to determine the underlying cause of abnormalities when they occur. Operators actively try
to construct a coherent and logical explanation to account for their observations. Thus, accurate SA is
critical to taking proper human action.

There are several models of SA: sensemaking (Klein, Moon, & Hoffman, 2006; Klein et al., 2007),
perceptual cycle theory of SA (Smith & Hancock, 1995; Adams, Tenney, & Pew, 1995), and the
functional model of orienting activity (Bedny & Meister, 1999;; Bedny, Karwowski, & Jeng, 2004). The
model that has received the most empirical investigation and support is Endsley’s model, which was
developed through work in the aviation industry and has been applied in numerous additional industries,
such as air traffic control, military command and control, and power plant operations. With increased use
of automation across many fields, researchers have observed persistent findings related to operator
awareness of what is happening in the plant or process and awareness of what automation is doing. These
findings show that automation does not necessarily improve operator performance (Endsley, 1996, 1997;
Endsley & Kaber, 1999; Endsley & Kiris, 1995; Jou et al., 2009; Kaber & Endsley, 2004; Lin et al., 2009,
2010a, 2010b; van de Merwe et al., 2012).

Endsley’s SA model is an information-processing model that documents the product of situation
assessment in three levels. Level 1 involves perception of the status, attributes, dynamics, and other
relevant aspects of elements in the environment, such as information and objects (Endsley, 1995). Level 1
SA simply involves perception of the relevant elements; higher-level comprehension does not occur until
Level 2. Level 2 SA involves combining, integrating, and interpreting the information perceived in the
Level 1 SA into an understanding of the current situation (Endsley, 1995, 2000). Level 3 SA involves
projecting the current situation into the future to mentally forecast the future state of the situation given
currently available information (Endsley, 1995, 2000), enabling the person to project and anticipate how
the situation is going to evolve. Each level builds on the previous level to create understanding of the
situation and errors made at an earlier level impair subsequent levels of awareness.

One of the most significant findings related to effects of automation on operator performance and SA
is referred to as the out-of-the-loop phenomenon or out-of-the-loop performance problem (Endsley, 1995,
1996, 1997; Endsley & Kaber, 1999; Kaber & Endsley, 1997, 2004; Parasuraman et al., 2000; Sheridan,
2002; Wickens & Hollands, 2000; Wright & Kaber, 2005). When operators are out of the loop, they are



not aware of the state of automation or the system parameters (Endsley, 1996). This contributes to
operators failing or being slow to detect that a problem has occurred in the system that necessitates their
intervention. Furthermore, the out-of-the-loop phenomenon means that once operators have detected a
problem, they need additional time to determine and adequately understand the state of the system (in
other words, restore their SA of the system and automation) in order to take appropriate action.

The literature points to many issues with high levels of automation for many t functions related to
keeping the operator in the loop. However, AdvSMRs are likely to be designed to employ a higher level
of automation than current nuclear power plants. Therefore, extensive research needs to be conducted to
investigate how to enable higher levels of automations, while keeping the operator actively engaged in the
operation of the plant.

Studies have shown a decrease in SA when the operator’s workload is either too high or too low.
Hence, operator workload seems to be a major consideration for designing automation. Many believe that
automation can improve operator SA by reducing operator workload. However, some studies indicate that
automation does not always decrease operator workload. Instead, automation may actually increase
workload depending on how it is designed and the cognitive functions automation is responsible for (Lin
et al., 2010a). In addition, automation may reduce operator workload at the expense of SA (van de Merwe
et al., 2012, Miller & Parasuraman, 2007).

It is important to recognize that automation is not perfect. In fact, all engineered systems have less
than perfect reliability. Automation’s reliability is defined as how well automation accomplishes its task
and reliability is one of the characteristics of properly functioning automation. For simple automated
systems the measure of reliability is quite straight forward. However, when automation’s tasks are
complex it becomes more difficult to define measures of reliability. In addition, automation’s reliability
may differ across different context of use and/or modes of operation.

One factor that has a large impact on the reliability of the automation is degradation. Problems arising
in the instrumentation and control infrastructure can lead to degradation or failure of any aspect of
automation (O’Hara et al., 2010). In a degraded condition, automation will continue to operate, but the
loss of functionality may lead to incorrect performance. In a failed condition, automation does not
perform at all. Degradation of automation can lead to two types of problems for the operator: 1)
automation does not do what it is supposed to do when it should do it, and 2) automation does something
that it is not supposed to do at all. With each of these types of problems, operators must detect the
degraded or failed automation, determine the proper actions to take (via assessing the situation and
planning a response), and/or transition to back-up systems or operations. Each of these human actions is
potentially subject to human performance issues.

Highly reliable automation is assumed to improve task performance, but not the detection of
automation failures. In fact, the higher the reliability of automation, the less likely it is that the operator
will recognize when it fails (Dixon & Wickens, 2006; Wickens et al., 2010). This is one of the ironies of
automation identified by Bainbridge in 1983. When operators know the actual reliability of the system,
they can make use of that knowledge to adjust their use of automation. Based on the reviewed literature,
the HAC researchers hypothesized the relationship as follows; As automation becomes less reliable, its
support for task performance becomes less and performance declines. At some reliability threshold,
automation’s lack of reliability draws operator attention away from the task to automation monitoring and
task performance suffers. At an even lower threshold, operators abandon automation altogether and
perform the task manually.

Many of the factors that can lead to SA problems can be traced directly to the way automation is
designed. Therefore, it is essential to minimize these problems during system design and optimize the
benefits of automation without sacrificing operator SA (Endsley, 1995). In addition, the human-system
interface (HSI) can both affect objective performance and has an important impact on operator SA.
Dehais, Causse, and Tremblay (2011) studied how “cognitive countermeasures” presented through the



HSI can help mitigate cognitive errors that the operator might commit when automation behaves in an
unexpected manner. The study demonstrated that the dynamic presentation of visual cues in the HSI were
effective at getting the operator’s attention without causing over fixation on the visual cue and conveyed
to the participant what aspects of the situation had changed and affected the collaboration task such that
the operator was no longer surprised by the change in the automation’s behavior. The results of this study
reinforce the ideas that the HSI is an important mediator between humans and automation and that it is
important that the HSI communicate the right information to the operator at the right time.

HSI is also key to whether operators detect the automation degradation or failure. Operator SA can
minimize the “routine-failure tradeoft”, i.e., failures are better handled when operators have good SA
regarding the system and automation state (Wickens et al., 2010). However, even if operators do monitor
automation, the design of the operator’s interface with the automation may not support monitoring needs
and, may be misleading. Willems and Heiney (2002) stated that “As errors involving automation tend to
be more cataclysmic and costly, the human interface has become more important than ever” (p. 3). The
HSIs typically provide insufficient information about automation’s goals, current activities, and
performance (Lee & See, 2004; Liu, Nakata & Furuta, 2004; Parasuraman & Riley, 1997; Rook &
McDonnell, 1993; Roth et al., 2004).

Hence, one of the important factors that contribute to successful HAC is whether the HSI is
successful in providing adequate information to keep the operator in the loop. In other words, the HSI
must successfully inform the operators about what the automation is doing, what its reliability of the
automation is, etc. The content and format of the HSI design impacts operator trust (Lee & See, 2004;
Parasuraman & Riley, 1997). Trust in automation is closely related to the concept of perceived reliability
of the automation. Parasuraman and Riley (1997) suggest that monitoring of automation is improved
when its behavior can be determined easily using the HSIs, especially those that minimize attentional
demands such as displays that integrate information and provide emergent features. They noted that there
is evidence to indicate that automation failures were better detected with these types of displays.
Conversely, operators are less likely to monitor automation when the HSI does not offer an easy means to
do so. How to best design such HSI for highly complex systems, such as for AdvSMRs, to ensure
efficient collaboration between the operators and the automation has not been adequately explored at this
time. In addition, the increased complexity could affect operator use in more and more complex ways.
Understanding how more sophisticated automation affects operator use and HAC system performance is
important to the AdvSMR designer. Therefore, research needs to be conducted to identify the AdvSMR
specific HAC characteristics and investigate their affect on the use of automation.

In summary, the investigation of the current state-of-knowledge related to HAC concludes that even
though there is a lot of research conducted in the fields of human factors and automation that is applicable
to the AdvSMR context there are still knowledge gaps that needs to be addressed. One of these gaps is
how to best enable higher levels of automation, which is something believed to be of high importance to
the field of AdvSMRs.

1.3 Adaptable Automation as a Way to Enable Higher Levels of
Automation

Generally, higher LOAS result in better system performance. Unless there is an automation failure,
that is (Wickens, et al. 2010; Smith & Jameison, 2012; Manzay, Reichenbach, & Onnasch, 2008;
Onnasch et al., 2013). In the case of automation failure, higher LOAs often result in the human operator
failing to recover due to a reduction in SA during the automated period. Lower LOAS result in better
human monitoring of the system, but fail to take advantage of the enhanced performance that automation
can provide during routine performance. Many researchers have described the relationship between
system performance and fault recovery performance as a fundamental tradeoff with level of automation
(Wickens, et al. 2010; Smith & Jameison, 2012; Manzay, Reichenbach, & Onnasch, 2008; Onnasch et al.,
2013).



For tasks that require human-automation collaboration (i.e., automation is desirable, but the operator
must be involved in monitoring and some manual control), researchers have recommended using
intermediate levels of automation to manage these tradeoffs. Unfortunately, using intermediate levels of
automation doesn’t necessarily optimize performance of either the human or the automation (Onnasch et
al. 2013). Intermediate levels of automation represent a “least-bad-of both worlds” approach to managing
system performance and human monitoring of automation. In intermediate automation, system
performance is typically worse than fully automated, but better than manual. Similarly, human monitoring
and fault recovery under condition of intermediate automation are typically superior to fully automated
conditions, but not as good as manual.

Several researchers have proposed that adaptive automation is a better way to manage and perhaps
eliminate these tradeoffs. Adaptive automation can be simply described as dynamic allocation of
functions. One potential benefit of adaptive automation is that it can result in more balanced workload
because tasks can be assigned to automation based on the conditions encountered during operation.
Another potential advantage is that tasks can be assigned to the automation when the human operator’s
performance or situation awareness declines, but that the human can remain engaged in the process by
manually controlling (or partially controlling it) at other times.

Many studies have demonstrated the effectiveness of adaptive automation in enhancing performance
compared to fully manual systems (Kaber, Wright, Prinzel & Clamann, 2005; Kaber, Perry, Segall,
McClernon, & Prinzel, 2006; Kaber, & Riley, 1999). A few studies have also demonstrated that
automation fault recovery with adaptive automation is superior to fully automated systems (Calhoun,
Ruff, Spriggs, & Murray, 2012). Further, studies have shown that situation awareness is better with
adaptive automation than with fully automated systems (Parasuraman, Cosenzo, & De Visser, 2009).
Essentially, the promise of adaptive automation is that it provides system performance closer to fully
automated designs, but without the negative human performance consequences.

There are still many unanswered questions regarding the applicability and superiority of adaptive
automation. For example, most of the empirical studies on adaptive automation demonstrate that it
enhances performance compared to static automation at the extremes (fully manual and fully automatic),
few studies compare adaptive automation to intermediate levels (although a few do, e.g., Parasuraman,
Cosenzo, and De Visser, 2009 and Sauer, Nickel, and Wastell, 2013). In addition most studies investigate
adaptive automation’s effect on system performance or the effect on human performance, but few look at
both. Thus, the question still remains; does adaptive automation manage human performance and system
performance tradeoffs more effectively than static intermediate levels?

Further, there is the question of how to initiate a shift in automation. As a part of one of the three
analytical studies mentioned above, the HAC researchers conducted a literature review aimed at
identifying the effectiveness of triggering conditions for adaptive automation. Empirical results of studies
the effect of various triggering conditions on performance and situation awareness were reviewed. The
researchers compared the following triggering conditions; operator-initiated adaptive automation,
performance based triggering conditions, and model based triggering conditions, physiological-based
triggering conditions, and critical event triggering conditions. It is important to point out that the
researchers have made a distinction between adaptive automation and adaptable automation. Adaptive
automation is typically described as system-initiated shifts in automation, while adaptable automation is
typically described as operator-initiated shifts in automation. In both cases, the level of automation can be
shifted to support operators. All of the triggering conditions listed besides operator initiated triggering are
considered system initiated shifts.

The review revealed that there are many tradeoffs associated with the various triggering mechanisms.
System-initiated shifts in automation may surprise operators or reduce their SA, but operator-initiated
shifts may increase operator workload. Further operators may choose to use lower levels of automation
when the system is adaptable rather than adaptive, resulting in reduced system performance. Finally,



some adaptive automation designs, such as those based on physiological assessment of operator workload
and SA may consistently enhance performance compared to static automation, but may not be feasible to
implement in a control room environment (Le Blanc & Oxstrand 2104).

Based on the results of the analytical study on triggering conditions, the HAC researchers concluded
that adaptable automation using a task delegation interface may be the best way to approach automation
in the AdvSMR context. In this adaptive automation scheme, the tasks are broken down into a
hierarchical abstraction scheme with higher level goals as the highest abstraction and component-level
manipulation as the lowest level of abstraction. The automation can be shifted up and down the
abstraction hierarchy based on the current conditions or operator’s needs. Many studies have investigated
the implementation of this type of adaptive using an operator-controlled task delegation interfaces (note
that because the shifts in automation are controlled by the operator, it is adaptable rather than adaptive in
this case). Adaptable task delegation interfaces tend to enhance performance compared to static
automation (Parasuraman et al., 2005; Miller et al., 2011; Shaw et al., 2010), however it is still unclear
whether this type of adaptable automation is superior to intermediate automation.

Researchers hypothesized that an adaptable task delegation interface could be used to enable high
levels of automation (and hence system performance) without sacrificing human performance on a
simplified process control simulation. Section 2 describes the experimental study in detail.



2. METHOD

In order to determine whether an adaptable task delegation interface enhances performance compared
to intermediate levels of automation, the researchers conducted an experimental study to using simplified
process control simulation. The researchers compared human performance and system performance using
the adaptive automation design to varying levels of automation (manual, intermediate and fully
automatic) under normal conditions and automation failure conditions. As discussed in the previous
section, some of the human performance issues with automation are reduced SA and fault management.
Fault detection and management were therefore incorporated in the experimental study. The researchers
investigated the effect of automation condition on the participants’ ability to detect and manage the failing
automation; the researcher also measured SA, system performance, and subjective workload.

The goal of the study was to demonstrate that the adaptable automation is better than intermediate
automation in managing the human performance costs of increased automation. If adaptable automation is
indeed better than intermediate automation at managing the tradeoffs, then system performance using the
adaptable automation should be better than that of manual and intermediate automation and closer to fully
automatic. In addition human performance (i.e., SA, and fault management) using the adaptable
automation should be better than fully automatic and intermediate, and closer to manual.

2.1 Simulation Development

With the intention to investigate human-automation interaction and collaboration in a controlled way
that could also be generalized to the context of AdvSMRs, the research team developed a simplified
process control simulation that could be used to test human-automation interaction.

The process was designed to be simple enough for undergraduate psychology students to be able to
operate with minimal training, but complex enough to allow for varying the level of automation. The
process also needed to be difficult enough for researchers to detect differences in performance across the
automation conditions (i.e., it needed to be difficult enough that not all participants performed perfectly).
In order to ensure that the task was difficult enough (i.e., the researchers wanted to avoid a ceiling effect
in which all participants displayed error-free performance), the simulation was designed so that it required
the participants to actively maintain the process at all times. In manual mode, the operators had to take
many actions per minute in order to keep the process within the prescribed parameters. It was expected
that in all conditions, the participants would not be able to perform perfectly.

The process was also designed with proposed concepts of operations of AdvSMRSs in mind. For
example, the process requires the management of two separate product streams (Mixing tanks A and B)
with different operational requirements. This is analogous to the proposed concept of using the AdvSMR
plant to supply both electricity generation and process heat. One of the product streams also has dynamic
requirements, which is analogous to load-following, another potential operational concept for AdvSMRs.
Even though the process control simulation incorporates these AdvSMR-like concepts of operation it is
not intending to mimic an actual process found in a nuclear power plant.

211 Task Description

The goal of the process is to provide appropriate concentrations of a chemical to two different
processes. The chemical must be mixed with heated water. The participant must manage 5 tanks and
associated pumps, valve and heaters to control the process.
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As indicated in Figure 1, the process starts with the heater tank. Feed water flows into the tank from
the water treatment plant and the flow is controlled by the feed water control valve. Once in the tank, the
temperature of the water is controlled by the heater. The water temperature needs to be kept within a
certain range to ensure proper mixing later in the process. The heater tank also needs to be kept within a
certain level range in order to support the rest of the process without risking overfilling the tank. The
operator must monitor heater tank temperature and level and adjust the heater and valves as needed.

The heated water then flows into two accumulator tanks where it is stored until it is needed later in
the process. Each tank has a control valve associated with it that controls the flow of heated water from
the heater tank to the accumulator tank. The levels of both accumulator tanks need to be kept between
within a certain range.

From the accumulator tanks, the water flows to the mixing tanks where it is mixed with a
concentrated chemical. To manage the mixing tanks, the operator must control both the flow of chemical

from the tank, and the flow of heated water from the accumulator tanks. The flow of chemical is

controlled via a valve and a pump. The pump defaults to automatic control mode, which means that the
pumps automatically turns on when you open the control valve and turns off when you close it. In manual
mode, the pump needs to be turned on if you want water to flow from the tank when the valve is opened
and vice versa. The flow of water is controlled via one pump that moves water from the accumulator tank

to the mixing tank.

There are two mixing tanks. One feeds the main process, while the other feeds a different company’s
process. Each mixing tank needs to be kept within a certain level. In order to maintain the level, the
operator must control the flow of both water and chemical into the mixing tank. The concentration of

chemical needed in each tank depends on the manufacturing process the tank is supplying. The

concentration in each mixing tank needs to be kept within a specific range in order to support the process.
The mixing tanks have different demands depending on the manufacturing process they are feeding.
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Each important process parameter is presented as a trend graph, see Figure 2. The margins that the
process parameter needs to be kept in are displayed as tick marks on the right side of the trend display.
The trend display turns bright yellow when the process parameter moves outside the required margins. An
audible alert also sounds when the parameters goes outside of the require range. If the parameters get too
far outside the required ranges, the trend display turns red. This means that the operator must take
immediate action in order to maintain safety and the parameter back in range.

There are a total of ten process parameters, out of which eight are parameters that the participants
were required to monitor and keep within range. These eight parameters are:

Heater Tank Level

Heater Tank Temperature
Accumulator Tanks A and B Levels
Mixing Tank A Level

Mixing Tank A Concentration
Mixing Tank B Level

Mixing Tank B Concentration

The other two parameters are set in the scenario, but the participants are asked about them in the SA
questionnaires. These two parameters are:

e Mixing Tank A outflow
e Mixing Tank B outflow
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Figure 2. Screenshot of Yellow and Red Warnings.
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2.1.2 Automation Descriptions

The process simulation is designed with four possible levels of automation: Fully Manual,
Intermediate (decision support system), Adaptable (task delegation interface), and Fully Automatic. These
levels of automation are described in the sections below.

2.1.2.1 Fully Manual
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In the Fully Manual condition, the control of the entire process is carried out by the human. The
human must monitor the levels, temperature and concentrations of all the tanks. The operator must open
valves, turn on pumps, and turn on the heater, in order to main the appropriate process parameters. Figure
3 is a screenshot from the manual condition.
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2.1.2.2

SMWHO1

Intermediate

Up Time: 00:00:30

Silence Alarm |

Safety Control

Shutdown

Mixing Tank A Level Low
Turn On MT-FCP-A

Time to event: 0.3

Decision Support System

Confirm

| Disregard

FWCV

00 Ib/hr | 620 F

< Feed Water

Heater Tank Level

100

75

25 4

] 5=
50 %

Heater Tank Temp

220 210 o

115

50 s
128 F

HT-OP
0.0 Ib/hr

HT-OP Ctrl.

Automatic

| Manual

AT-IV-A
Accum. A Level

100 a5

75 A

MT-FCP-A Ctrl.
50

MT-FCP-A
0.0 Ib/hr

PST-FCP-A Ctrl.

Automatic |

25

0 5=
50 %

Accum. B Level
100 95 -

75 -

AT-IV-B

Manual |

PST-FCP-A [FEU

0.0 Ib/hr

Pantheradine
Storage Tank

Concentration Feed
100%

PST-FCP-B Jey

0.0 Ib/hr

PST-FCP-B Ctrl.

Automatic

Manual |

MT-FCP-B Ctrl.

50
MT-FCP-B
0.0 Ib/hr

0

Mixing Tank A Level
100 ==

75

20%
LogMieing Tank Agcanc.

50 o
30 -

1] 5=
40 %

250 Ib/hr{ sMR Chemi('a|>

u

oo Mg Tank B Level
95

75 o

36 %

Loging Tank agcson_c

150 Ib/hr pengal Pharm>

Figure 4. Screenshot From Simulation in the Intermediate Condition.

The definition of intermediate automation used in this study was taken directly from Endsley and
Kaber’s (1999) taxonomy of levels of automation, see Section 1.1 — Current State-of-Knowledge. The
researchers used the fifth level of automation, Decision Support, which is described as:

“The computer generates a list of options that the human can select from; the operator may still
generate his or her own options. The computer is responsible for implementing the chosen action. This
LOA is common in many expert systems or decision support systems in which the operator may use or
ignore the option guidance provided by the system.”

In the Intermediate automation condition, the automation monitors the process and prompts the
operator via the decision support system when a parameter is about to go out of range. The prompts
appear in the panel on the left of the screen, see Figure 4. The prompt contains a description of the
conditions, a suggested course of action, and an estimate of the time until the parameter is out of range.
The operator can click a “confirm” button on the prompt, and the automation will carry out the suggested
action. The operator can also dismiss the prompt and carry out the suggested action manually or ignore
the prompt. The rest of the interface is identical to the Fully Manual condition.
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2.1.2.3  Adaptable
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Figure 5. Screenshot From Simulation in the Adaptable Condition.

In the Adaptable automation condition, the process is divided into four high level functions:
managing the heater tank, managing the accumulator tanks, managing mixing tank A and managing
mixing tank B. Through the task delegation interface, see Figure 5, the operator can choose to delegate
any or all of the high level functions to the automation or perform the functions manually. The operator
uses the panel to the left to select whether the functions are automated (the default is manual). When a
function is delegated to automation it is highlighted with a gray box. The rest of the interface is identical
to the manual condition.
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2.1.2.4  Fully Automatic
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Figure 6. Screenshot From Simulation in the Fully Automatic Condition.

In the Fully Automatic condition, all of the tasks are carried out by the automation. The operator’s
task is to monitor the system to ensure the automation is working properly, and to take manual action if
the automation fails to keep the process within the prescribed parameters. To take a manual action the
operator has to select the “Manual” option in the component controller. When the manual action is taken
the operator can switch the operating mode back to automatic by selecting the “Automatic” option in the
component controller. Figure 6 shows the interface used in the Fully Automatic condition.

2.2 Participants

Participants were 107 undergraduate psychology students at Idaho State University. Six of the 107
participants had incomplete data sets and were dropped from the analysis, leaving 101 participants. There
were 35 males and 66 females. The average age was 23 years. The participants were given course credit
for their participation.

2.3 Experimental Design

2.31 Independent Variables

Automation condition is the main independent variable. As described in Section 2.1.2, there are four
levels of automation: Fully Manual, Intermediate (decision support system), Adaptable (task delegation
interface), and Fully Automatic. Automation condition was manipulated between participants (each
participant executed both scenarios using a single level of automation). Below is a summary of the
automation conditions.

1. Fully Manual: The operator handles all tasks manually.
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2. Intermediate: The automation monitors, generates responses, and presents possible actions to the
operators, and the operator chooses the actions to be taken, the automation then carries out the
chosen action.

3. Adaptable: The process was divided into four high level tasks. The operator can choose to
delegate any (or all) of the four tasks to the automation or perform the tasks manually.

4. Fully Automatic: Automation handles all tasks, Operator task is to monitor and take manual
control if necessary.

The second independent variable is whether the scenario had a fault or had no fault. This was
manipulated within participants, where each participant completed one of each scenario type. The fault
and the no fault descriptions are below.

1. Fault: The automation fault was the same for each participant. In the simulated process, the
chemical flows from the concentration tank to the mixing tank. The flow is controlled by a valve
and a pump that, under normal circumstances, turns on automatically when the valve is opened
(this was true in all four levels of automation). During the fault scenario, the pump fails to turn
on automatically when the valve is opened. The participant must select manual control from the
pump controller and turn on the pump manually in order to recover from the fault and keep the
parameter in range (participants were trained on how to switch the pump from automatic to
manual and how to manually control the pump during the tutorial). The fault was injected at the
same time for each participant.

2. No Fault: In the no fault scenario, the participant needs to monitor and control the process
parameters, and respond to changing demand in mixing tank B (required concentration and
outflow changed during the scenario).

See Appendix B — Introduction Material for a complete description of the scenarios.
2.3.2 Dependent Variables

The researchers measured system performance by assessing the degree to which the 8 parameters
were kept within range. They adapted the discrepancy score metric reported in Ha and Seong (2009). In
addition, the researchers measured the total time that any one of the 8 parameters was out of range. The
simulation software logged the state of the 8 parameters, the automation mode of the subsystems
(automatic or manual), and the state of the subsystems (e.g., valves were logged as opened or closed). The
data was logged approximately once every five seconds.

2.3.21 System Performance

The main performance measure for system performance was discrepancy scores. The discrepancy
scores were calculated by comparing the actual value of a given parameter at the times sampled across the
entire scenario to the acceptable range of that parameter. The formula for computing the discrepancy
score is as follows:

Xi(t)—S i s
{—S -—SL-, ,lei(t) > SUi
UiT°Li

e Discrepancy at time t, D;(t) =<0, if S;; < X;(t) < Sy;
X;(t)-SL; -
| 2950 i x,(0) < s

Sui=Swi
o §;; =lower bound of parameter i
o Sy; =upper bound of parameter i

o X;(t)= value of parameter i at time t
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. . D;(t
e Average discrepancy for parameter i = Y1 #

e Overall discrepancy score = Sum across all parameters

The difference between this measure and Ha and Seong’s (2009) measure is the method by which the
scores were normalized. Ha and Seong (2009) use the mean of the parameter at steady state to normalize
the score. The process used in this study was designed such the operator must actively maintain the
parameters, so it does not have what could described as a steady state. The distance between the upper
and lower bounds were use, instead, to normalize the scores.

2.3.2.2 Human Performance

According to many researchers, adaptive automation has the advantages of enabling higher levels of
automation by reducing the human performance costs of automation. Therefore it is important to assess
the situation awareness, workload and fault management performance using each of the levels of
automation.

Situation awareness (SA) was assessed by a freeze probe questionnaire (See Appendix C — Situation
Awareness Questionnaire). The SA questionnaire was based on the Situation Awareness Control Room
Inventory (SACRI) (Hogg, Follesg, Strand-Volden, & Torralba 1995). SACRI is typically administered
by freezing a simulation scenario and quizzing participants about important parameters (identified by a
subject matter expert). The questions ask about the current development of parameters, as well as the past
and future development of parameters. The SA questionnaire used in this study was a slightly modified
version of SACRL

The participants were asked about each of the 10 parameters they were required to monitor. The
questions asked what the current value of the parameter was and how it would develop in the next 10
seconds as well as how it had developed in the past 10 seconds. The 10 second timeframe might seem
short, but the scenarios were designed to evolve rather rapidly. The participants were instructed to enter
indicate (by entering and ‘n’ in the input field of the current state questions and selecting a ‘?” on the past
and future trend questions) that they honestly did not know that the value of the parameter was. The
formula for computing the SA discrepancy score is as follows:

o Average SA discrepancy for parameter i =
%(Sw — S.1),if the response was 'n’

T 1Xi(£)=S;(®)]

t=0 ,if anumerical value was provided

Syi—SLi
e X;(t) = Value of Parameter i at time t

e S;(t) =Reported Value (on SA questionnaire) of parameter i at
time t

e S;; =lower bound of parameter i
e Sy = upper bound of parameter i
e Discrepancy for each freeze probe questionnaire is the sum average across all parameters

e Overall discrepancy score = Sum of the three freeze probe questionnaire scores

The responses to the past and future trend questions were scored in the following way:

e Did the parameter decrease at any time during the 10-second period? If so, "decrease" is
considered correct.
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e Did the parameter increase at any time during the 10-second period? If so, "increase" is
considered correct.

e Was the parameter constant at any time during the 10-second period? Was the
parameter's value at the end of the period within 1% or 1 degree of where it was at the
beginning of the period? If either is so, "same" is considered correct.

e In some cases, there is more than one correct answer.
e If the subject's answer is among the list of correct answers, score = 0.

e If the subject answered "decreasing" or "increasing", but "same" was a correct answer,
score = 0.5.

o If the subject answered "same", but "increasing" or "decreasing" was a correct answer,
score = 0.5.

e If the subject said he didn't know, score = 0.5.

o If'the subject answered "increasing” but the only correct answer was decreasing, or vice
versa, score =1.

Workload was assessed by NASA Task Load Index (NASA TLX) (Hart & Staveland, 1988). The
NASA TLX is a subjective workload questionnaire that is administered after each task (See Appendix A
for the NASA TLX Questionnaire).

Automation fault management was assessed by determining if the operator, 1) switched the pump to
manual, and 2) returned the parameter associated with the fault to acceptable range before the scenario
ended. If both conditions were satisfied, then it was counted as a success. If not then it was counted as a
failure.

2.4 Experimental Protocol

Participants first read and signed an informed consent form. During the consent process, the
participants were informed that they have the opportunity to be included in a drawing for a $25 gift card
at the end of the experiment. They were told that they will be eligible to be included based on how they
perform on the task (criteria are keeping the process parameters within the required bounds at least 70%
of the time). The participants in the Intermediate and Adaptable automation conditions were also
encouraged to choose a combination of manual and automatic control that optimized their performance.
The gift card drawing was intended to motivate participants to perform well. They then completed a short
demographics survey. Participants were also randomly assigned to one of the four automation conditions
(in groups of four to force equal sample sizes between automation conditions).

Following the demographic survey, the participants were given a brief overview and tutorial on how
to use the simulator. The tutorial took approximately 10 minutes to complete. The tutorial described the
system and instructed the participant how to operate the system in manual. The participant then completed
a 5-minute practice session operating the simulation in manual, which was followed by another brief
tutorial describing how to operate the system in the automation condition the participant had been
assigned to. When the tutorials were completed, the participants completed another 5-minute practice
scenario.

The participants completed two 10-minute experimental scenarios (one with a fault and one without,
order was counterbalanced). Before each scenario, the participants were given a brief overview of the
conditions they would encounter in the scenario including acceptable ranges of the eight parameters and
the values of the two tank outflows. Participants were also given a brief explanation of the SA
questionnaire. Participants in the intermediate and adaptable automation conditions were instructed to use
the combination of manual control and automation that they felt provided the best performance. During
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the scenario, the simulation froze periodically (three times per scenario) and prompted the participants to
answer a small set of situation awareness questions. Following each scenario, the participants filled out
the NASA TLX survey. Once the last scenario was complete, the participant filled out a short debrief
questionnaire. See Figure 7 for an illustration of the experimental protocol. Table 3 describes the number
of participants in each condition.

Table 3. The Number of Participants in Each Condition.
Fault/No fault

Auto n=25

Adaptable n=26

Intermediate n=25

Manual n=25
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Figure 7. A Visualization of the Experimental Protocol.
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2.5 Hypotheses

Based on the existing literature in human automation interaction, the researcher s developed the
hypotheses presented in Table 4. In addition to the hypothesis listed above, the research investigated the
following research questions: How much do participants in the intermediate and adaptable automation
conditions use automation?

Table 4. List of Hypotheses.
Discrepancy scores (lower scores represent better performance)
Fully Automated <= Adaptable <Intermediate < Manual

Human Performance

Operator SA

SA discrepancy scores Manual <= Adaptable <Intermediate < Fully Automated
SA past and future trend scores Manual <= Adaptable <Intermediate < Fully Automated
Fault Management

Success/failure performance Adaptable >= Manual >Intermediate> Fully Automated
Operator Workload

NASA TLX Score Manual >Adaptable >=Intermediate > Fully Automated

Number of manual control actions | Manual >Adaptable >=Intermediate > Fully Automated
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3. RESULTS
3.1 System Performance

System performance was assessed by determining how well the human-automation team kept the 8
parameters within the required ranges during the 10-minute scenario. This was computed in two ways.
First by discrepancy scores, which is an adaptation of the measure reported in Ha and Seong (2009), as
described in Section 2.3.2 — Dependent Variables. The second is by computing the total time any of the 8
parameters were out of range.

3.11 Discrepancy Scores

The main performance measure for system performance was discrepancy scores. Discrepancy scores
were calculated by comparing the actual value of a given parameter at the times sampled across the entire
scenario to the acceptable range of that parameter. The formula for computing the discrepancy score is
described in Section 2.3.2.1 — System Performance. Table 5 presents the means and standard deviations of
the discrepancy score. It is important to note that the standard deviations are quite large relative the
means, indicating that this data is non-normal. In each condition, there are many subjects who perform
well and a few subjects who perform very poorly; the difference among groups is primarily a difference
in how many subjects perform very poorly.

Table 5. Mean Discrepancy Score by condition. Lower discrepancy scores indicate better performance.

Mean Standard Deviation
Fault Auto 0.19 0.33
Intermediate 0.33 0.33
Adaptable 0.36 0.35
Manual 0.81 0.69

No
Fault Auto 0.09 0.42
Intermediate 0.17 0.26
Adaptable 0.17 0.27
Manual 0.60 0.57

An ANOVA revealed a significant main effect of automation condition (F (3,96)=17.4, p<.0001) and
significant main effect of fault versus no fault (F (1, 96)= 7.9, p=.006), but not a significant Automation
condition X Fault condition interaction. Tukey’s Studentized range test revealed significant pairwise
comparisons between manual and the other three automation conditions, but there were no significant
differences among the other three automation conditions. This indicates that based on discrepancy scores,
performance was worst when the process was Fully Manual, but that performance was similar between
Fully Automated, Intermediate and Adaptable conditions. Contrary to the hypothesis, there was not a
significant difference in system performance between Intermediate and Adaptable automation. Figure 8
illustrates the mean discrepancy scores across the automation and fault conditions. If the fault had a
differential effect on discrepancy scores based on the automation condition (i.e., if the fault itself caused
one group to perform worse than the others) then we would expect there to be a significant interaction
between fault type and automation condition.
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Figure 8. Average Discrepancy Scores. Error bars represent standard error of the mean.

3.1.2 Time Out of Range

Performance on the task was also assessed by computing the total time that any 1 of the 8 parameters
was out range.

Table 6 presents the Means and Standard deviations of Time out of Range performance across
Automation and Fault conditions. An ANOVA revealed a significant main effect of automation condition
(F (3,96) =54.9, p<.0001) and significant main effect of fault versus no fault (F (1, 96) =7.9, p<=.006)).
All of the pairwise comparisons were significant except for the Intermediate and Adaptable automation
conditions. This indicates that performance was best when the process was Fully Automated and worst
when the process was Fully Manual. The Intermediate and Adaptable conditions produced better
performance than Fully Manual, but not as good as Fully Automated. Contrary to the hypothesis, there
was not a significant difference in system performance between Intermediate and Adaptable automation
conditions. Figure 9 shows graphical representation of the time out of range.

Table 6. Mean Time out of Range by Automation condition and Fault Condition. Lower time indicates
better performance.

Mean Standard Deviation

Fault Auto 132 53
Intermediate 235 144
Adaptable 277 129
Manual 458 113

No

Fault Auto 74 77
Intermediate 188 166
Adaptable 233 146
Manual 400 162
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Figure 9. Time Out of Range. Error bars represent standard error of the mean.

3.2 Situation Awareness

Situation awareness was assessed by determining how well the participants kept track of the 8
parameters. This was done by assessing whether the participants knew the value of each parameter at the
time of the questionnaire, and by assessing whether they were aware of how the parameters were
changing in the past and how they would change in the future.

3.21  Situation Awareness Discrepancy Scores

The response to the reports values of the parameters on the SA questionnaire were used to compute
SA discrepancy scores. See Section 2.3.2.2 — Human Performance for the formula used to do so. Table 7
presents the means and standard deviations for SA discrepancy score by automation condition and fault
condition. In the table, lower time indicates better performance.

Table 7. Means and Standard Deviations for SA Discrepancy Score by Automation condition and Fault
Condition. Lower time indicates better performance.

Mean Standard Deviation
Fault Auto 9.97 3.49
Intermediate 10.16 3.28
Adaptable 10.30 3.84
Manual 12.27 5.46

No
Fault Auto 10.97 4.13
Intermediate 10.70 4.04
Adaptable 11.98 4.46
Manual 12.70 5.98

The sum of the SA discrepancy scores across the three SA questionnaires was analyzed using a 2 X 4
mixed ANOVA. As indicated in Figure 10, there was not a significant effect of automation condition or
fault condition. This indicates that SA discrepancy scores did not differ depending on automation
condition or the presence of a fault.
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Figure 10. Situation Awareness Discrepancy Scores. Error bars represent standard error of the mean.

3.2.2 Situation Awareness Past and Future Trend Scores

The overall SA Past and Future Trend Score for a scenario is the sum across all parameters on the
three freeze probe questionnaires. A total of 60 questions were asked; 0 is a perfect score, blind guessing
or a full slate of “I don’t know” results in a score just under 30.

An ANOVA revealed there was not a significant effect of automation condition or fault condition on
SA Past and Future Trend Scores. This indicates that SA past and future trend scores did not differ
depending on automation condition, see Figure 11.
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Figure 11. Situation Awareness Past and Future Trend Scores. Error bars represent standard error of the
mean.
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3.3 Fault Management
3.3.1 Success Rate

Fault performance was scored based on whether the participant took appropriate action and got the
parameter back in range after the fault was injected (5 participants kept the parameter within range even
after the fault was injected, they were counted as successes). A one way ANOVA revealed a significant
effect of automation condition on successful fault management (F (1, 97) = 6.3, p=.001), and Tukey's
Studentized Range Test confirms that the following pairwise comparisons are significant:
Automation*Intermediate, Automation*Manual, Manual*Adaptable, and Intermediate* Adaptable. Figure
12 shows the Fault Management Success where the number of successes is based on the following group
sizes: Automation: 25, Intermediate: 25, Adaptable: 26, and Manual: 25.

Fault Management Success

RN RN N N
o (&) o [¢)]
1 1 1 )

Number of Successes

()]
1

Auto Intermediate Adaptable Manual

Figure 12. Fault Management Success. The number of successes is based on the following group sizes:
Automation: 25, Intermediate: 25, Adaptable: 26, and Manual: 25.

3.4 Workload
3.41  Subjective Workload

Subjective workload was assessed by scores on the NASA TLX questionnaire. There were no
significant effects among the workload scores. Figures 13 and 14 depict the mean NASA TLX scores
grouped by sub score for all four automation conditions. In the figures the error bars represent standard
error of the mean.
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Figure 13. Mean NASA TLX Scores grouped by sub score for all four automation conditions in the No
fault condition. Error bars represent standard error of the mean.
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Figure 14. Mean NASA TLX Scores grouped by sub score for all four automation conditions in the Fault
condition. Error bars represent standard error of the mean.

3.5 Use of Automation

The Intermediate and Adaptable automation conditions allowed participants to use automation at their
discretion. It is important to understand if there was a difference in how participants used the automation
in these conditions. Use of automation was characterized by calculating the fraction of the total actions
carried out by automation.
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o Cy = total number of control actions taken by human

o (4 = total number of control actions taken by automation

Ca
Cy+Cy

o Fraction of actions carried out by automation (Automation Fraction) =

There was not a significant difference in the average fraction of actions carried out by automation
between the Intermediate and Adaptable automation conditions (M = .48 and .M = .51, respectively),
indicating that, on average, both groups delegated the same amount to automation.

There was not a significant difference in performance or SA between Adaptable and Intermediate
automation conditions based on the automation conditions, however given that individual participants
within each of the conditions chose to utilize the automation to different degrees, it is useful to investigate
whether the amount of automation used in those two conditions is related to any of the measured
variables.

3.5.1 System Performance

Because there was no difference in the fraction of automated actions between the Intermediate and
Adaptable automation conditions, the two conditions are combined in the following analyses.

Automation Fraction is a significant predictor of performance. The line of best fit was Total Time Out
=329 + 52*Fault - 243* Automation Fraction, with all 3 terms significant. r* = .28 (.26 due to Automation
Fraction, .02 due to fault.).

A participant in the Intermediate and Adaptable automation conditions in the No-fault situation is
expected to be out of bounds 86+53 seconds if making maximum possible use of automation, and 328+51
seconds if making minimum possible use of automation. By comparison, the average Auto subject
(automation fraction very near 1) was out of bounds for 75+29 seconds and the average Manual subject
(automation fraction 0) was out of bounds for 400+£64 seconds. [+ are 95% confidence intervals, not 95%
prediction intervals. |

With a fault, the regression equation predicts 138+51 seconds out of bounds with maximum possible
use of automation and 381+52 seconds with minimum possible use. The average Auto subject was out of
bounds 132+21 seconds and the average Manual subject was out of bounds for 458+45 seconds.

This indicates that in the conditions where participants could use automation at their discretion, using
more automation resulted in better performance.

Figure 15 depicts the scatter plot of Total Time Out versus Automation Fraction for Intermediate and
Adaptable Automation conditions in the no fault scenario. Figure 16 depicts the scatter plot of Total Time
Out versus Automation Fraction for Intermediate and Adaptable Automation conditions in the fault
scenario. The red squares plot the mean values for Fully Automatic and Fully Manual conditions for
comparison.

The pattern of results was similar, but not as strong based on average discrepancy score. The line of
best fit is:

Average discrepancy Score = 0.288 + .187*Fault - .246* Automation Fraction

All 3 terms are significant (t=4.73 for intercept, t=3.19 for fault, t=-2.67 Automation Fraction.). r* was
.13 (.05 due to Automation Fraction, .08 due to fault.).
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Figure 15. Scatter plot of Total Time Out versus Automation Fraction for Intermediate and Adaptable

Automation Conditions in the no fault scenario. The red squares plot the mean values for Fully Automatic
and Fully Manual conditions for comparison.

Fault

* L 4

600

500

N
o
o

Total Time Out
N w
o o
o o

100 ¢

0 0.2 0.4 0.6 0.8 1
Automation Fraction

Figure 16. Scatter plot of Total Time Out versus Automation Fraction for Intermediate and Adaptable
Automation Conditions in the fault scenario. The red squares plot the mean values for Fully Automatic
and Fully Manual conditions for comparison.

3.5.2 Situation Awareness

Automation fraction was also a significant predictor of SA for the Adaptable and Intermediate

automation groups. As automation increased, SA performance decreased (that is, SA discrepancy score
increased). The line of best fit is:

Sum of SA Discrepancy Score = 8.49 + 4.62* Automation Fraction, t=4.10, r"\2=.13.
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Figure 17 illustrates the relationship between SA discrepancy score and automation fraction for the
Intermediate and Adaptable automation conditions and Figure 18 illustrates the relationship between SA
past and future trend score and automation fraction for the Intermediate condition. In the figure, a higher
score indicates worse performance.

25 -

N
o

-
(6]

SA Discrepency Score
=

()]

0 0.2 0.4 0.6 0.8 1
Automation Fraction

Figure 17. Scatter plot of SA Discrepancy Score versus Automation Fraction for Intermediate and
Adaptable Automation Conditions.

The SA Past and Future Trend scores yielded a different pattern of results for Intermediate and
Adaptable automation conditions. Automation fraction was not a significant predictor of SA Past and
Future trend Scores for Adaptable automation, but it was for Intermediate automation. The line of best fit
for Intermediate automation is:

SA Past and Future Trend Score = 14.56 + 7.73* Automation Fraction (t=4.63, 1"2=.30)

Intermediate Condition

0 0.2 04 0.6 0.8 1
Automation Fraction

SA Past and Future trend scores

Figure 18. Scatter plot of SA Past and Future Trend Score versus Automation Fraction for Intermediate
Automation Condition. Higher Scores indicate worse performance.
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4. DISCUSSION AND CONCLUSIONS

Based on the human-automation collaboration literature, the researchers predicted that the adaptable
automation would result in an optimum combination of human and system performance. That is,
adaptable automation would yield system performance that was better than both manual and intermediate
automation levels (but not necessarily as good as fully automatic), and human performance (i.e., SA,
workload, and fault management) that was better than automatic and intermediate levels (but not
necessarily as good as manual performance). The results of this study demonstrate that adaptable
automation enhances system performance compared to manual control, but is not as good as fully
automatic. Interestingly, system performance between adaptable and intermediate levels of automation
did not differ significantly. This indicates that adaptable automation may be no better than intermediate
levels of automation at handling the fundamental tradeoffs of increasing levels of automation from a
system performance perspective.

Another way to assess the effectiveness of adaptive automation is to look at how it affects human
performance compared to other levels of automation. The researchers compared fault management
performance, SA, and workload in order to compare human performance across the automation
conditions. More participants in the Adaptable automation condition successfully managed the fault than
in any of the other automation conditions. This may indicate that fault management performance is better
using adaptable automation. However, the fault management performance for the other three levels of
automation was not as expected. The researchers hypothesized that participants in the Manual condition
would performance the best, and automation condition would perform the worst. The results indicate that
the opposite was true.

Previous research finds that SA tends to decrease with increasing automation (Endsley, 1995, 1996,
1997; Endsley & Kaber, 1999; Kaber & Endsley, 1997, 2004; Parasuraman et al., 2000; Sheridan, 2002;
Wickens & Hollands, 2000; Wright & Kaber, 2005). Hence, the situation awareness findings were not as
expected based on the reviewed literature. Not only was there no difference between the Adaptable and
Intermediate automation conditions, there was not a significant difference across all four levels of
automation. There are several possible explanations for why the SA scores did not differ based on
automation condition. First, the simulation required a large number of actions in order to keep the process
under control. It is possible that the participants were too busy keeping the process under control to
effectively monitor the parameters. However, if this were true, then we would expect SA performance to
be better in the Fully Automated condition, which it was not. Another possible explanation is that the
process simply changed too quickly for participants to keep track of all of the parameters. Because the SA
questionnaire was based on a technique used for nuclear power plant control room simulations, where
changes typically happen much more slowly, then perhaps the method for measuring SA in this study was
not appropriate.

One interesting result is that for the Adaptable and Intermediate automation conditions, the amount of
automation (as measured by the fraction of total actions carried out by the automation) was related to
performance on the SA questionnaire. Participants who used more automation had worse SA than
participants who used less automation. These findings are in line with previous research; however it is
unclear why the results for Fully Automated and Fully Manual do not follow the same pattern.

Taken together the findings from this study do not confirm the common claim that adaptable
automation is an effective method to manage human performance and system performance tradeoffs
associated with increasing automation, but do not necessarily refute it. Specifically, other researchers
often state that adaptable automation is a better solution than intermediate levels of automation. Based on
the results of this study, performance using adaptable automation is similar to that of using intermediate
automation. However, as noted many of the other results were also not consistent with previous literature.
Due to the limitations present in this study, some of the findings in this study are somewhat inconclusive.
One limitation is in the definitions of LOA used and their specific implementations in this study.
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Although the researchers adhered to previously accepted definitions of level of automation, it may not
necessarily be accurate to characterize automation as strictly as it has been in the literature (or in this first
experiment study). The definition of intermediate automation used in this study was taken directly from
Endsley and Kaber’s (1999) taxonomy of levels of automation. Their taxonomy has ten levels. Level five
(called decision support) is the level we defined as our intermediate level, and is described below:

“The computer generates a list of options that the human can select from; the operator may still
generate his or her own options. The computer is responsible for implementing the chosen action. This
LOA is common in many expert systems or decision support systems in which the operator may use or
ignore the option guidance provided by the system.”

Though this definition represents an intermediate level of automation in Endsley and Kaber’s (1999)
taxonomy, it is not strictly static automation. That is, the operator has a choice in whether the actions
suggested by the decision support system are carried out by the automation. Adaptable automation is
typically defined as dynamic allocation of functions. A decision support system defined this way is
inherently adaptable, because an operator can direct the automation to carry out suggested actions or
ignore the suggestions. This may be the reason that the current research failed to detect a difference
between Intermediate and Adaptable automation. Though the method by which tasks were delegated to
automation was quite different, the number of tasks delegated to automation was roughly the same for
both conditions. Based on the fraction of automated actions, in the Intermediate and Adaptive automation
conditions, the amount of automation used predicted performance and SA better than the specific
automation condition participants were assigned to. Surprisingly, the amount of automation in Fully
Automatic and Fully Manual conditions did not predict SA performance. Future research should explore
why this was the case.

Further, researchers designed the study to replicate other research on adaptable task delegation
interfaces; however the process control simulation was not sufficiently complex to design a truly
hierarchical abstraction scheme to use for the task delegation interface. Therefore, although his study
compared an adaptive task delegation interface to an intermediate level of automation and found no
differences, it is premature to conclude that in general adaptive task delegation interfaces do not enhance
performance compared to intermediate automation. Further research needs to be conducted to replicate
and extend these findings to a truly hierarchical task delegation interface.

This study was done with university students with minimal training; consequently, the participants
were novice controllers of the process. As the discrepancy scores and time out of range scores illustrate,
participants did not master the process before conducting the experimental scenarios. The researchers
intended the task to be difficult enough to generate deviation in performance, but the task was perhaps too
difficult for novice users. This limitation may explain the inconclusive findings of the SA measures.
Participants may have not had an adequate understanding of the process, resulting in inadequate SA
across all automation conditions. Future research efforts should ensure that participants are trained to
proficiency to increase the chances of detecting potential difference in SA between automation
conditions.

The same limitation may explain the surprising result that there was not a difference in subjective
workload (based on NASA TLX scores). If you consider the number of manual control actions in the two
extremes of LOAs, the NASA TLX results are especially surprising. Excluding the fault period,
participants in the Manual condition took an average of 130 actions, while those in the Automation
condition took 0 manual actions. One would expect that given such an enormous difference in the number
of manual actions, the subjective workload would be quite different across the two extremes. If the
participants in all of the conditions were still struggling to understand the process, it is possible that they
were overwhelmed even when their only task was to monitor the process as it was controlled by
automation.
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Finally, the process control simulation required many actions to keep the parameters within range.
Most of these tasks would be automated in a real process control situation, which may make it
inappropriate to generalize the results directly to process control.

In conclusion, the results of this research indicate that although many researchers have suggested
adaptive automation may enable higher levels of automation without introducing human performance
costs, further research is needed to determine if it is truly superior to intermediate levels of automation.
Therefore, experimental research efforts in the HAC project will investigate the effects of a modified
process control simulation (with modification to the automation schemes to more accurately reflect the
schemes used in other research) on expert performers. The researchers will extensively train a group of
participants on operation of the simulation in order to eliminate the issues related to novice participants
controlling the process.

One insight that this research provides is that the numerous methods to characterize automation may
not be needed to define automation’s effect on human performance. There is not a consensus in the
human automation interaction literature regarding definitions for important terms like level of automation.
According to these taxonomies, there is an enormous amount of nuance in the way that automation can be
implemented. Careful consideration of the condition described in this research reveals that a commonly
used intermediate level of automation, decision support, could actually be characterized as adaptive. The
decision support prompts in this study were presented when the process parameters were in danger of
going out of range. If the participants were doing a good job manually controlling the process, then he
would get fewer decision support prompts. However, if the participant was having trouble controlling the
process he would get more decision prompts. This situation is analogous to an operator performance-
based adaptive automation scheme. In fact, the intermediate level of automation (which was designed
based on a literal interpretation of Endsley and Kaber’s taxonomy) was more adaptive than the adaptable
automation condition, which required the operator to initiate shifts in automation. The existing
taxonomies may be very useful in extensively describing automation, but they may not be needed to be
specified in such a minute level of detail to explain differences in human performance when interacting
with automation.

Another important issue related to the potential complexity of automation design impacts on human
performance is that the design of the human system interface can drastically influence the degree to which
a particular automation design is effective. Therefore, it is difficult to provide general guidance on how to
effectively design automation, because it largely depends on the specific circumstances. Future research
should aim to define the minimum set of factors that influence human performance and system
performance in automated systems. This will help to provide generalizable design guidance for automated
systems.

As mentioned above, empirical and analytical research will be conducted as needed to investigate the
affect of automation on performance, efficiency, and safety. The design of human-system interaction to
best support operation of automated systems and multiple product streams will be investigated through
process simulator studies. The results from these additional studies will be used to refine the HAC model,
which was initially developed by the researchers 2013. The refined model will be used to identify design
requirements needed to ensure safe and effective operation. Based on the requirements a guidance
document for development and evaluation of HAC design will be developed. In order to make the
guidance document more practical to use, the researchers will develop a software tool for design and
evaluation of Human-Automation Collaboration.
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APPENDIX A - NASA TLX
To be administered after each task

For each of the categories below, please draw a line indicating where on the scale you think the task falls.
For example if you thought mental demand on this task was medium, you would draw a line as close to
the center as you could. When evaluating each category, compare the task to driving a car in no traffic
versus driving a car in heavy traffic.

Mental Demand -- How much mental activity was required (e.g., thinking, deciding, calculating,
remembering, looking, searching, etc.)? Was the task easy or demanding, simple or complex, exacting or

forgiving?

| |
Low High
Physical Demand — How much physical activity was required (e.g., pushing, pulling, turning,
controlling, activating, etc.) Was the task easy or demanding, slow or brisk, slack or strenuous, restful or
laborious?

| |
Low High
Temporal Demand — How much time pressure did you feel due to the rate or pace at which the task or
task elements occurred? Was the pace slow and leisurely or rapid and frantic?

| |
Low High
Performance — How successful do you think you were in accomplishing the goals of the task set by the
experimenter (or yourself)? How satisfied were you with your performance in accomplishing these goals?
| |
Good Poor

Effort — How hard did you have to work (mentally and physically) to accomplish your level of
performance?

| |
Low High
Frustration Level — How insecure, discouraged, irritated, stressed, and annoyed versus secure,
gratified, content, relaxed, and complacent did you feel during the task?

| |
Low High
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APPENDIX B — INTRODUCTION MATERIAL

Introduction

Congratulations! You have just been hired as a process operator for SMR Chemical. At SMR Chemical,
we make a variety of chemicals that are used in the pharmaceutical industry. At the plant where you will
be working, we make Pantheradine™, which is used in the manufacture of a new kind of children’s pain
reliever. SMR chemical manufactures its own product using Pantheradine™, and sells the rest of it to
Bengal Pharmaceuticals. Bengal Pharmaceuticals manufactures a full line of children’s medication that
uses Pantheradine™, and requires different amounts and concentrations for each product.

You will be responsible for the part of the process where we take raw Pantheradine™ that was produced
in another part of the plant and prepare it for use by SMR Chemical and Bengal Pharmaceuticals.
Pantheradine™ is rarely used in full concentration. In order to deliver the specific concentration of
Pantheradine™ required for each product, we mix the full-strength, raw Pantheradine™ with heated
water, which is necessary to ensure efficient dilution. The process you will control consists of moving the
heated water into two storage tanks, and then sending the appropriate amount of heated water and
concentrated Pantheradine™ to the mixing tanks. One tank is designated for SMR Chemical; the other is
designated for Bengal Pharmaceuticals. The properly diluted Pantheradine™ is then sent to each
manufacturer to be used in their respective processes.

Your job is to ensure that SMR chemical has a steady flow of properly mixed Pantheradine™, and to
provide Bengal Pharmaceuticals with Pantheradine™ at the flow rate and concentration that they specify.

Scenario 1 — No Fault
Initial Requirements

Equipment/system Required Parameter Value
Level of Heater Tank 20-80%
Temperature of Heater Tank 120F+-10F
Accumulator Tank A Level 15-85%
Accumulator Tank B Level 15-85%
Tank C Level 20-80%
Tank C Concentration 50%+-10%
TanK C outflow 30 Ibs/hour
Tank D Level 20-80%
Tank D Concentration 50%+-10%
TanK D outflow 201bs/hour

Time Sequence of Events

Time Action
03:15 Freeze for SA Questionnaire
04:00 Message:

Bengal Pharm is stopping production in 30

seconds. They anticipate production will restart in 2
minutes, and they will require 60% concentration at
30lbs/hour.

04:30 Message:
Bengal Pharm has stopped production. Please make
necessary adjustments.

06:00 Actual Message:

Bengal Pharm has started production.
7:30 Freeze for SA Questionnaire
8:30 Freeze for SA Questionnaire
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Scenario 2 — Automation Fault Injected

Initial Requirements

Equipment/system Required Parameter Value

Level of Heater Tank 20-80%

Temperature of Heater Tank 120F+-10F

Accumulator Tank A Level 15-85%

Accumulator Tank B Level 15-85%

Tank C Level 20-80%

Tank C Concentration 50%+-10%

TanK C outflow 20 Ibs/hour

Tank D Level 20-80%

Tank D Concentration 80%+-10%

TanK D outflow 30 Ibs/hour

Time Sequence of events

Time Action

02:45 Freeze for SA Questionnaire

04:20 Message:
Bengal Pharm is stopping production in 15
seconds. They anticipate production will restart in 1
minute, and they will require 50% concentration at
201Ibs/hour.

04:35 Message:
Bengal Pharm has stopped production. Please make
necessary adjustments.

05:20 Message:
Bengal Pharm has started production.

06:45 Freeze for SA Questionnaire

07:30 Automation Fault

08:30 Pump returns to operating normally

09:45 Freeze for SA Questionnaire
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APPENDIX C — SITUATION AWARENESS QUESTIONNAIRE
Instructions to the participant

®  During the scenario, the simulation will occasionally freeze and prompt you to answer some
questions (see right) about the parameters you are monitoring and controlling.

® Do your best to answer the questions based on your knowledge.

®  [f you honestly don’t know the answer and can’t make an educated guess, simply enter a lower

690

casc n .

= Similarly, if you honestly don’t know whether the value has increased or decreased in the last 10
seconds, then select the “?”.

Situation Awareness Questionaire

Parameter Approximate Value i Development in the past 10 secs | Development in the next 10 secs

Heater Tank Level % Same Decreased ©) Increased ? Same Decrease Increase ?
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